titd. 1884	P.R.Government College (Autonomous) KAKINADA	Program&Semester II B.Sc. Major & Minor					
Course Code MAT- 402 T	TITLE OF THE COURSE Introduction to Real Analysis & Problem Solving Sessions	(IV Sem) w.e.f 2023-24 admitted batch					
Teaching	HoursAllocated:60(Theory)	L	Т	P	С		
Pre-requisites:	Knowledge of Multivariate Calculus and Linear Algebra	3	1	-	3		

Course Objectives:

To formalise the study of numbers and functions and to investigate important concepts such as limits and continuity. These concepts underpin calculus and its applications.

Course Outcomes:

On Co	mpletion of the course, the students will be able to-
CO1	Get clear idea about the real numbers and real valued functions.
CO2	Obtain the skills of an alysing the concepts and applying appropriate methods for testing
CO3	Test the continuity and differentiability and Riemann integration of a function.
CO4	Know the geometrical interpretation of mean value theorems and the fundamental theorem of integral calculus

Course with focus on employability/entrepreneurship /Skill Development modules

Unit – I REALNUMBERS,REAL SEQUENCES

The algebraic and order properties of R - Absolute value and Real line - Completeness property of R -Applications of supremum property - intervals. (No question is to be set from this portion) Sequences and their limits -Range and Boundedness of Sequences - Limit of a sequence and Convergent sequence -The Cauchy's criterion - properly divergent sequences - Monotone sequences -Necessary and Sufficient condition for Convergence of Monotone Sequence - Limit Point of Sequence -Sub sequences and the Bolzano-weierstrass theorem - Cauchy Sequences - Cauchy's general principle of convergence.

Unit - II

INFINITIE SERIES

Introduction to series -convergence of series -Cauchy's general principle of convergence for series tests or convergence of series - Series of non-negative terms - P- test - Cauchy's nth root test -D'-Alembert's Test.

Unit – III

LIMIT & CONTINUITY

Real valued Functions - Boundedness of a function - Limits of functions - Some extensions of the limit concept - Infinite Limits - Limits at infinity (No question is to be set from this portion). Continuous functions - Combinations of continuous functions - Continuous Functions on intervals - uniform continuity.

Unit IV:

DIFFERENTIATION ANDMEANVALUETHEORMS

The derivability of a function at a point and on an interval - Derivability and continuity of a function -Mean value Theorems -Rolle's Theorem, Lagrange's Theorem, Cauchy's Mean value Theorem.

Unit - V

RIEMANNINTEGRATION

Riemann Integral - Riemann integral functions - Darboux theorem -Necessary and sufficient condition for R integrability - Properties of integrable functions - Fundamental theorem of integral calculus - Mean value Theorems.

Activities

Seminar/ Quiz/ Assignments/ Applications of ring theory concepts to Real life Problem /Problem Solving Sessions.

Text book

Modern Algebra by A.R. Vasishta and A.K. Vasishta, Krishna Prakashan Media Pvt. Ltd.

Reference books

- 1. A First Course in Abstract Algebra by John. B. Farleigh, Narosa Publishing House.
- 2. Linear Algebra by Stephen. H. Friedberg and Others, Pearson Education India

CO-POMapping:

(1:Slight[Low];	2:Moderate[Medium];	3:Substantial[High],	'-':NoCorrelation)

	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PSO1	PSO2	PSO3
CO1	3	3	2	3	2	3	1	2	2	3	2	3	2
CO2	3	2	3	3	2	3	3	1	3	2	3	2	1
CO3	2	3	2	3	2	3	2	2	2	3	2	2	3
CO4	3	2	3	2	2	1	3	3	2	1	3	1	2

BLUE PRINT FOR QUESTION PAPER PATTERN SEMESTER-IV

Unit	TOPIC	S.A.Q	E.Q	Marks allotted to the Unit
I	REAL NUMBERS, REAL SEQUENCES	1	1	15
II	INFINITIE SERIES	2	2	30
III	LIMITS & CONTINUITY	2	1	20
IV	DIFFERENTIATION AND MEAN VALUE THEORMS	1	1	15
V	RIEMANNINTEGRATION	1	1	15
	Total	7	6	95

S.A.Q. = Short answer questions (5 marks)

E.Q = Essay questions (10 marks)

Short answer questions $: 4 \times 5 = 20 \text{ M}$

Essay questions $: 3 \times 10 = 30 \text{ M}$

......

Total Marks = 50 M

......

Pithapur Rajah's Government College (Autonomous), Kakinada II year B.Sc., Degree Examinations - IV Semester Mathematics Course X: Introduction to Real Analysis Model Paper (w.e.f. 2024-25)

.....

..

Time: 2Hrs Max. Marks: 50

SECTION-A

Answer any three questions selecting atleast one question from each part

Part - A

 $3 \times 10 = 30 M$

- 1. Essay question from unit I.
- 2. Essay question from unit II.
- 3. Essay question from unit II.

Part - B

- 4. Essay question from unit III.
- 5. Essay question from unit IV.
- 6. Essay question from unit V.

SECTION-B

Answer any four questions

4 X 5 M = 20 M

- 7. Short answer question from unit -I.
- 8. Short answer question from unit II.
- 9. Short answer question from unit II.
- 10. Short answer question from unit III.
- 11. Short answer question from unit III.
- 12. Short answer question from unit IV.
- 13. Short answer question from unit V

P.R. GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA DEPARTMENT OF MATHEMATICS

Question Bank

PAPER-IV: REAL ANALYSIS

Short Answer Questions

UNIT-I

- 1. Show that every convergent sequence is bounded . Give an example to show the converse is not true .
- 2. Prove that $\lim \left[\frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \cdots + \frac{1}{(n+n)^2} \right] = 0$
- 3. Show that $\lim_{n\to\infty} \left[\sqrt{\frac{1}{n^2+1}} + \sqrt{\frac{1}{n^2+2}} + \dots + \sqrt{\frac{1}{n^2+n}} \right] = 1.$
- 4. State and prove sandwich theorem.
- 5. Define a Cauchy's sequence. Prove that every convergent sequence is a Cauchy sequence
- 6. Prove that if $\{S_n\}$ is a Cauchy sequence, then $\{S_n\}$ is bounded.
- 7. Prove that every Cauchy's sequence is convergent.

UNIT-II

- 8. If $\sum u_n$ convergence then show that $\lim u_n=0$. Is the converse true ? Justify your answer .
- 9. Test for convergence of $\sum \frac{1}{2^n+3^n}$
- 10. Test for convergence of $\sum (1 + \frac{1}{n})^{-n}$
- 11. Examine the convergence of $\sum_{n=1}^{\infty} (\sqrt{n^3 + 1} \sqrt{n^3})$.
- 12. Test for convergence of $\sum_{n=1}^{\infty} (\sqrt{n^3+1} \sqrt{n^3-1})$
- 13. Test the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^3} \left(\frac{n+2}{n+3}\right)^n x^n$, $\forall x > 0$
- 14. Test for convergence of $\sum_{n=1}^{\infty} \frac{n!}{n^n}$
- 15. Test for the convergence of $\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6...2n} \chi^{n-1} (\chi > 0)$.

UNIT-III

- 16. If f: $[a, b] \rightarrow R$ is continuous on [a, b] then f is bounded on [a, b].
- 17. Examine the continuity of the function defined by f(x) = |x| + |x 1| at x = 0, 1.
- 18. Show that $f: R \to R$ defined by f(x) = 1 if $x \in Q$; f(x) = -1 if $x \in R Q$ is discontinuous for all $x \in R$.

- 19. Discuss the continuity of the following function at the origin $f(x) = x \left(\frac{e^{1/x}-1}{e^{1/x}+1}\right)$ if $x \neq 0$ and f(0)=1.
- 20. Prove that the function defined by $f(x) = x^2 \sin(1/x)$ for $x \neq 0$ and f(x) = 0 for x = 0 is continuous at x = 0.
- 21. Discuss the continuity of $f(x) = x \left(\frac{e^{1/x}}{e^{1/x+1}}\right)$ if $x \neq 0$ and f(0) = 0 at the origin.
- 22. From the definition prove that $f(x) = x^2$ is uniformly continuous on [-a, a].
- 23. From the definition show that $f(x) = x^2 + 3x$ is uniformly continuous on [-1, 1]

UNIT-IV

- 24. If $f: [a, b] \to R$ is derivable at $c \in [a, b]$, then prove that f is continuous on [a, b]. Is its converse true? Justify your answer.
- 25. Find c of Cauchy's mean value theorem for $f(x) = \sqrt{x}$, $g(x) = \frac{1}{\sqrt{x}}$ in [a, b] where 0 < a < b.
- 26. Verify Cauchy's mean value theorem for $f(x) = x^2$, $g(x) = x^3$ in [1,2].
- 27. Examine the applicability of Rolle's theorem for $f(x) = 1 (x 1)^{2/3}$ on [0, 2].
- 28. Discuss the applicability of Rolle's theorem for the function $f(x) = \log \frac{x^2 + ab}{x(a+b)}$ in [a,b] where $0 \notin [a,b]$.
- 29. Using Lagrange's Mean Value theorem prove that $1+x < e^x < 1+xe^x$, $\forall x > 0$

UNIT-V

- 30. If $f(x) = x^2 \forall x \in [0,1]$ and $P = \{0,1/4, 2/4, 3/4, 1\}$, then find U(P,f) and L(P,f).
- 31. Find the lower and upper Riemann sums of f(x) = 2x -1 on [0,1] when $P = \{0, 1/3, 2/3, 1\}$
- 32. If $f \in R[a, b]$ and m, M are the infimum and supremum of f on [a,b] then prove that $m(b-a) \le \int_a^b f(x) dx \le M(b-a)$.
- 33. If f is R-integrable on [a,b] then show that $|\ f\ |$ is R-integrable on [a,b] .
- 34. Evaluate $\int_0^{\pi/4} (sec^4x tan^4x) dx$

Essay Questions

UNIT-I

- 1. Show that a monotonic sequence is convergent iff it is bounded.
- 2. Prove that the sequence $\{s_n\}$ defined by $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$ is convergent.

3. Show that the sequence $\{s_n\}$ where $s_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$ is convergent.

4. If
$$S_n = \frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \dots + \frac{1}{n(n+1)}$$
 the show that $\{s_n\}$ is convergent.

5. State and prove Cauchy's general principle of convergence.

UNIT -II

- State and prove Limit comparison test.
- 7. State and prove Cauchy's n^{th} root test.
- 8. State and prove D'Alemberts ratio test.
- 9.Test for convergence $\sum \frac{x^n}{x^n+a^n}$ (x>0, a>0).
- 10. Test for convergence of i) $\sum_{n=1}^{\infty} (\sqrt[3]{n^3+1} n)$ ii) $\sum_{n=1}^{\infty} (\sqrt{n^4+1} \sqrt{n^4-1})$.
- 11. Test for convergence of $\frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \cdots$

UNIT-III

- 12. State and Prove Intermediate value theorem.
- 13.If $f:[a,b] \to R$ is continuous on [a,b], then f is bounded on [a,b] and attains its bounds or infimum and supremum.
- 14. Test the continuity of of $f(x) = \frac{e^{1/x} e^{-1/x}}{e^{1/x} + e^{-1/x}}$ if $x \neq 0$ and f(0) = 0 at x = 0.
- 15.Let f: R o R be such that $f(x) = \frac{\sin(a+1)x + \sin x}{x}$ for x < 0, f(x) = c for x = 0 and
 - $f(x) = \frac{(x+bx^2)-x^{\frac{1}{2}}}{bx^{\frac{3}{2}}}$ for x >0. Determine the values of a, b, c which the function is continuous at x = 0.
- 16. Determine the constants a,b so that the function defined by f(x) = 2x + 1 if $x \le 1$;

$$f(x) = ax^2 + b \text{ if } 1 < x < 3 \text{ ; } f(x) = 5x + 2a \text{ if } x \geq 3 \text{ is continuous every where }.$$

UNIT-IV

- 17. State and prove Roll's theorem.
- 18. State and Prove Lagrange's mean value theorem.
- 19. State and Prove Cauchy's mean value theorem.

20. Using Lagrange's mean value theorem, show that

$$x > log(1+x) > \frac{x}{1+x}$$
 if $f(x) = log(1+x) \ \forall x > 0$

21. Show that
$$\frac{v-u}{1+v^2} < tan^{-1}v - tan^{-1}u < \frac{v-u}{1+u^2}$$
 for $0 < u < v$. Hence deduce that $\frac{\pi}{4} + \frac{3}{25} < tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$.

UNIT-V

- 22. State and prove Necessary and Sufficient condition for integrability.
- 23. If f is continuous on the [a, b] then prove that f is Riemann Integrable on the [a, b].
- 24. If f is monotonic on the [a, b] then prove that f is Riemann Integrable on the [a, b].
- 25. State and prove fundamental theorem of Integral Calculus.
- 26. Prove that $\frac{\pi^3}{24} \le \int_0^{\pi} \frac{x^2}{5+3\cos x} dx \le \frac{\pi^3}{6}$.
- 27. Show that $\frac{1}{\pi} \le \int_0^1 \frac{\sin \pi x}{1 + x^2} dx \le \frac{2}{\pi}$
